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behavior. Thus, the dramatic decline of the tiger is not
completely described by comparing the estimated 100 000
specimens still living in 1900 with the estimated 7000 of
1990 and the 2000 likely surviving at the beginning of this
century. Due to the conspicuous racial differences within
the species, additional concern is provided by the esti-
mate that no more than 400 Siberian tigers survive in the
wild, while three other subspecies (the Bali tiger, the
Caspian tiger, and the Javan tiger) already went extinct
between the 1940s and the 1980s.

Many studies have been performed on the effects that
removing a top predator from an ecosystem may cause on
other species. Often, but not always, further species loss
has been reported, that is, a series of cascading extinctions
in the food web, where the top predator originally per-
formed a stabilizing role. Relationships between food web
complexity and effect of top predator removal have been
suggested, but the point is still mooted.
See also: Coevolution.
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V Křivan, Biology Centre of the Academy of Sciences of the Czech Republic, Budweis, Czech Republic

ª 2008 Elsevier B.V. All rights reserved.
The Lotka–Volterra Model

The Functional and Numerical Response

Effects of Functional and Numerical Responses on

Prey–Predator Stability
Inhomogeneous Environment

Stability and Complexity in Prey–Predators Models

Summary

Further Reading
The Lotka–Volterra Model

Why did a complete closure of fishery during World War
I cause an increase in predatory fish and a decrease in
prey fish in the Adriatic Sea? This was the question that
led Vito Volterra to formulate a mathematical conceptua-
lization of prey–predator population dynamics. In his
endeavor to explain mechanisms by which predators regu-
late their prey, he constructed a mathematical model
that describes temporal changes in prey and predator
abundances. The model makes several simplifying
assumptions such as (1) the populations are large enough
so it makes sense to treat their abundances as continuous
rather than discrete variables; (2) the populations are well
mixed in the environment (which is the reason why this
type of model is sometimes called mass action model in an
analogy with chemical kinetics); (3) the populations are
closed in the sense that there is no immigration or emi-
gration; (4) the population dynamics are completely
deterministic, that is, no random events are considered;
(5) in absence of predators, prey grow exponentially;
(6) the per predator rate of prey consumption is a linear
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function of prey abundance; (7) predators are specialists

and without the prey their population will decline expo-

nentially; (8) the rate with which consumed prey are

converted to new predators is a linear function of prey

abundance; (9) both populations are unstructured (e.g., by

sex, age, size, etc.); and (10) reproduction immediately

follows feeding etc.
If R(t) and C(t) are the prey and predator abundance,

respectively, then under the above assumptions the popu-

lation dynamics are described by two differential

equations

dR

dt
¼ r –�Cð ÞR

dC

dt
¼ e�R –mð ÞC

½1�

where r is the per capita prey growth rate, � is the rate of
search and capture (hereafter search rate) of a single
predator for an individual prey item so that �R is the
per predator rate of prey consumption (i.e., the functional
response), e is the rate with which consumed prey are
converted into predator births, and m is the per capita
predator mortality rate. Model [1], which was indepen-
dently formulated by Alfred Lotka, is today known as the
Lotka–Volterra prey–predator model. For initial popula-
tion abundances R(0) and C(0), this model predicts future
abundance of prey R(t) and predators C(t) (Figure 1a).

From the ecological point of view, the important infor-
mation such a model can provide is whether or not

population abundances tend to an equilibrium at which

both species will coexist. At the equilibrium, predator and

prey abundances do not change (i.e., dR/dt¼ dC/dt¼ 0),

which gives

R� ¼ m

e�
and C� ¼ r

�

This equilibrium (shown as the solid dot in Figure 1b) is
at the intersection of the prey and predator isoclines; they
are the lines in the phase space along which dR/dt¼ 0
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Figure 1 Solutions of the Lotka–Volterra model [1] in time domain (a,

and in the prey–predator abundance phase space (b). Dashed lines ar
and dC/dt¼ 0 (shown as dashed lines in Figure 1b).
Interestingly, the prey equilibrium depends only on para-
meters that describe population growth of predators
whereas the predator equilibrium depends on the prey
per capita growth rate r. Thus, increasing the prey growth
rate r (which is sometimes called enrichment in the eco-
logical literature) does not change the prey equilibrium
density, but it increases the predator equilibrium
abundance.

Knowing the interior equilibrium does not tell us
whether this equilibrium is stable with respect to

perturbations in population abundances or not. In other

words, we want to know if after some (random) perturba-

tion from the equilibrium, population abundances will

return to this equilibrium or not. For the Lotka–

Volterra model [1] this question is easy to solve because

the model is an example of a conservative system with the

first integral

V R;Cð Þ ¼ m R=R� – 1 – ln R=R�ð Þ þ r C=C� – 1 – ln C=C�ð Þ ½2�

which is constant along the trajectories of the model (here
ln denotes the natural logarithm). Indeed, the time deri-
vative of V along a trajectory of model [1]

dV R tð Þ;C tð Þð Þ
dt

¼ qV

qR
R r –�Cð Þ þ qV

qC
C e�R –mð Þ ¼ 0

which implies that function V is constant along the tra-
jectories of the Lotka–Volterra model [1]. Moreover,
V(R, C)� 0 for positive population abundances (because
the inequality x� ln x� 1 holds for every x > 0) and
function V minimizes at the equilibrium point (R�, C�).
Thus, solutions of the equation V(R, C)¼ const, which are
closed curves in the prey–predator phase space
(Figure 1b), correspond to solutions of model [1]. This
analysis shows that both prey and predator numbers will
oscillate periodically around the equilibrium with the
amplitude and frequency that depend on the initial prey
and predator densities. Moreover, the average values of
(b)
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prey and predator densities over one period coincide with
their equilibrium densities R� and C�. Indeed, the equa-
tion for prey can be rewritten as

d ln Rð Þ
dt

¼ r –�C

Integration of this equation over one population cycle
of length T time units gives

ln R Tð Þð Þ – ln R 0ð Þð Þ ¼ rT –�

Z T

0

C tð Þdt

Since T is the period, the left hand side of the above
equality is zero (because R(0)¼ R(T)) and

�C ¼ 1

T

Z T

0

C tð Þdt ¼ r

�
¼ C�

where �C denotes the average predator density. Similarly,
the average prey density over each cycle equals the prey
equilibrium density.

The above analysis shows that the prey–predator equi-
librium is Lyapunov stable (i.e., after a small perturbation
the animal abundances stay close to the equilibrium,
Figure 1b), but it is not asymptotically stable because
the population abundances do not return to the equili-
brium. This particular type of equilibrium stability is
sometimes called the neutral stability. The eigenvalues
of the Lotka–Volterra model evaluated at the equilibrium
are purely imaginary (�i

ffiffiffiffiffi
rm
p

) which implies that the
period of prey–predator cycles with a small amplitude is
approximately 2�=

ffiffiffiffiffi
rm
p

.
The mechanism that makes prey–predator coexistence

possible in this particular model is the time lag between
prey and predator abundances, with the predator popula-
tion lagging behind the prey population (Figure 1a). The
Lotka–Volterra model shows that (1) predators can control
exponentially growing prey populations (this type of reg-
ulation is called the top-down regulation), (2) both prey and
predators can coexist indefinitely, (3) the indefinite coex-
istence does not occur at equilibrium population densities,
but along a population cycle. Can this model explain the
question about the observed changes in predator and prey
fish abundances during World War I? Volterra hypothe-
sized that fishery reduces the prey per capita growth rate r

and increases the predator mortality rate m, while the
interaction rates e and � do not change. Thus, ceased fishery
during World War I should lead to a decrease in average
prey fish population R� and to an increase in the average
predator fish population C�, exactly as observed.
The Functional and Numerical Response

The Lotka–Volterra model assumes that the prey con-
sumption rate by a predator is directly proportional to the
prey abundance. This means that predator feeding is
limited only by the amount of prey in the environment.
While this may be realistic at low prey densities, it is
certainly an unrealistic assumption at high prey densities
where predators are limited, for example, by time and
digestive constraints. The need for a more realistic
description of predator feeding came from the experi-
mental work of G. F. Gause on protist prey–predator
interactions. He observed that to explain his experimental
observations, the linear functional dependencies of the
Lotka–Volterra model must be replaced by nonlinear
functions.

To understand the nature of prey–predator interac-
tions, M. E. Solomon introduced concept of functional
and numerical responses. The functional response
describes prey consumption rate by a single predator as
a function of prey abundance, while the numerical
response describes the effect of prey consumption on the
predator recruitment. Most simple prey–predator models
such as the Lotka–Volterra model assume that production
of new predators is directly proportional to the food
consumption. In this case, the numerical response is
directly proportional to the functional response. The
constant of proportionality, e in model [1], is the effi-
ciency with which prey are converted to newborn
predators.

C. S. Holling introduced three types of functional
responses (Figure 2). The type I functional response is
the most similar to the Lotka–Volterra linear functional
response, but it assumes a ceiling on prey consumption rate

fI Rð Þ ¼ min �R; constf g

where const is the prey consumption rate when prey
abundance is high (Figure 2a). This functional response
is found in passive predators that do not hunt actively
(e.g., web-building spiders and filter feeders).

The type II functional response assumes that predators
are limited by total available time T. During this time
predators are assumed either to search for prey (for Ts

time units), or to handle prey (for Th units). If the pre-
dator search rate is � and R is the current prey density
then the encounter rate of a searching predator with prey
is �R. If handling of a single prey item takes h time units
then Th¼ h� R Ts. Thus, T¼TsþTh¼Ts(1þ h �R) and
the number of consumed prey by a predator during time
T is �RTs. The average consumption rate over time
interval T is then

fII Rð Þ ¼ �RTs

T
¼ �R

1þ h �R

which is the Holling type II functional response
(Figure 2b). This functional response is concave and for
large prey abundances it converges to 1/h, which is the
upper limit on consumption. The form of the Holling
type II functional response is equivalent with the
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Figure 2 The three Holling type functional responses (left panel (a), type I; (b) type II; (c), type III). Rcrit in panel (c) is the critical prey

density below which the functional response is stabilizing. The right panel shows the effect of the functional response on the equilibrium

stability. Stability condition [8] requires that the ratio of consumed prey to total prey abundance is an increasing function of prey

abundance. Parameters: �¼1, h¼ 0.1.
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Michaelis–Menten rate of substrate uptake as a function
of the substrate concentration.

The Holling type II functional response assumes that
the predator search rate � is independent of the prey

density. However, there are several ecological processes

that can make this parameter itself a function of prey

abundance, that is, �(R). These processes include, for

example, predator inability to effectively capture prey

when at low densities, predator learning, searching
images, predator switching between several prey types,

optimal predator foraging, etc. When substituted to the
Holling type II functional response, this added complex-

ity can change the concave shape of the functional

response to a sigmoid shape (Figure 2c). Sigmoid func-
tional responses are called the Holling type III

functional responses. A prototype of such a functional
response is obtained when � is replaced by �Rm� 1 in the

Holling type II functional response, which then leads to
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Figure 3 The Beddington–DeAngelis functional response [3].

Parameters: �¼1, h¼ 0.1, z¼0.2.
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a particular form of the Holling type III functional
response

fIII Rð Þ ¼ �R�

1þ �hR�

with parameter m� 1 (m¼ 2 in Figure 2c). For m¼ 1 the
above functional response coincides with the Holling type
II functional response, while for m> 1 the predator search
rate increases with increasing prey density. This functional
response is also called the Hill function. In enzymatic reac-
tion kinetics the Hill function often describes a cooperative
binding of several substrate molecules with an allosteric
enzyme that has several binding sites.

The Holling functional responses consider a single pre-
dator and are thus functions of prey abundance only. If
many predators are present, the per predator prey con-
sumption rate can be influenced by predator interference
that makes the functional response also dependent on pre-
dator density. A prototype of such a functional response is
the Beddington–DeAngelis functional response

f R;Cð Þ ¼ �R

1þ �hRþ zC
½3�

where z is a positive parameter that models predator
interference (Figure 3). Several other types of functional
responses can be found in the literature.
Effects of Functional and Numerical
Responses on Prey–Predator Stability

How does the shape of functional and numerical responses
influence prey–predator stability? This question led G. F.
Gause, A. N. Kolmogorov, W. W. Murdoch, and others to
analyze prey–predator models where the linear functional
and numerical responses of the Lotka–Volterra model are
replaced by more general functions. A general representa-
tion of a prey–predator model is

dR

dt
¼ r Rð ÞR – f R;Cð ÞC

dC

dt
¼ g R;Cð Þ –mð ÞC

½4�

where r (R) is the per capita prey growth rate, f (R,C) is the
functional response, g (R,C) is the numerical response, and
m is the per capita predator mortality rate. For r (R)¼ r,
f (R,C)¼�R and g (R,C)¼ e�R, the above model coincides
with the Lotka–Volterra model [1].

In what follows we will assume that model [4] has a
single positive equilibrium R� and C�. Then the question
is, what is the long-term behavior of prey and predator
abundances? Do they converge to this equilibrium? The
usual starting point to answer this question is to study
conditions under which the equilibrium is locally asymp-
totically stable. Conditions that guarantee local
asymptotic stability of the equilibrium are given in
terms of the Jacobian matrix evaluated at the equilibrium
of model [4]:

dr R�ð Þ
dR

R�þr R�ð Þ–
qf R�;C

�� �
qR

C�; –f R�;C�ð Þ– qf R�;C�ð Þ
qC

C�

qg R�;C�ð Þ
qR

C�;
qg R�;C�ð Þ

qC
C�

0
BB@

1
CCA

To derive the above matrix we used the fact that at the
equilibrium, g(R�,C�)¼m. If the sum of the two diagonal
elements (i.e., the trace) of the Jacobian matrix is negative
and the determinant is positive then the equilibrium is
locally asymptotically stable. This leads to the following
two general conditions:

dr R�ð Þ
dR

R� þ r R�ð Þ – qf R�; C�ð Þ
qR

C� þ qg R�;C�ð Þ
qC

C� < 0 ½5�

dr R�ð Þ
dR

R� þ r R�ð Þ – qf R�;C�ð Þ
qR

C�
� �

qg R�; C�ð Þ
qC

þ f R�;C�ð Þ þ qf R�;C�ð Þ
qC�

C�
� �

qg R�;C�ð Þ
qR

> 0

½6�

Although these two conditions look quite formidable,
they will substantially simplify for particular cases of
functional and numerical responses considered in the
next section.
Prey Growth Is Density Independent

Here we assume that the per capita prey growth rate is
density independent (r(R)¼ r), which implies that in sta-
bility conditions [5] and [6], dr(R�)/dR¼ 0. This case
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corresponds to the original Lotka–Volterra model in the
sense that the only mechanism that regulates the expo-
nential prey growth is predation (i.e., top-down
regulation).
Effects of the Holling type functional responses
on population dynamics

We will consider the effect of replacing the linear func-
tional response by a nonlinear functional response in the
Lotka–Volterra model. Prey–predator population
dynamics are described by

dR

dt
¼ rR – f Rð ÞC

dC

dt
¼ g Rð Þ –mð ÞC

½7�

For these dynamics the stability conditions [5] and [6]
substantially simplify because functional and numerical
responses are independent of the predator density (i.e., qf/
qC¼ qg/qC¼ 0). Substituting the predator equilibrium
abundance C�¼ rR�/f (R�), in stability conditions [5] and
[6] gives

df R�ð Þ
dR

>
f R�ð Þ

R�
½8�

and

dg R�ð Þ
dR

> 0

The latter condition states that the numerical response
should be an increasing function of prey abundance. This
condition will be satisfied for any reasonable numerical
response and let us focus on the first condition. This
stability condition can be interpreted graphically. The
equilibrium is locally asymptotically stable provided the
slope of the tangent line to the graph of the functional
response at the point (R�, f (R�)) is higher than is the slope
of the line that passes through the origin and the point
(R�, f (R�)). For example, in Figure 2c this happens if the
0 5 10 15 20
0

0.5

1

1.5

2

2.5
(a)

Prey abundance

P
re

da
to

r 
ab

un
da

nc
e

Figure 4 Prey–predator population dynamics [7] with the Holling ty
(h¼ 0.02) while panel (b) assumes large handling time (h¼0.15). The d
prey equilibrium density is to the left of the critical value
Rcrit at which both slopes are the same (i.e., the tangent to
the graph, shown as the dashed line, passes through the
origin). Alternatively, stability condition [8] states that for
a prey–predator equilibrium to be locally asymptotically
stable it is sufficient that the ratio of consumed prey to
total prey (i.e., f (R)/R, Figure 2, right panel) is an increas-
ing function of prey density at the equilibrium. Indeed,
condition [8] is nothing else than expression of the fact
that derivative of function f (R)/R with respect to prey
density is positive. This is equivalent to saying that the
prey zero isocline (C¼ rR/f (R), shown as the horizontal
dashed curve in Figures 1b and 4–8) has a negative slope
at the equilibrium. Clearly, a linear functional response
used in the Lotka–Volterra model, the type I functional
response and the type II functional response do not satisfy
stability condition [8] (Figures 2a, 2b, right panel). This
means that the interior equilibrium is not asymptotically
stable and we can ask what happens if populations are
shifted of the equilibrium. In the case of the Lotka–
Volterra model with the linear functional response we
already know that after a perturbation trajectories oscil-
late around the equilibrium (Figure 1).

Now let us consider the effect of the Holling type II
functional response on the prey–predator equilibrium

stability. For small handling times the Holling type II

functional response causes trajectories to spiral outward

from the equilibrium (Figure 4a)

R� ¼ m

e – hmð Þ� ; C� ¼ er

e – hmð Þ�

When prey density is high, the Holling type II functional
response is saturated and equal approximately to 1/h.
Substituting this value in [7] and integrating the model,
it can be proved that for large handling times that satisfy
h > e�/(rþm) there are trajectories along which both
prey and predator populations grow to infinity (one
such trajectory is shown in Figure 4b). In this latter case
the prey population escapes completely the predator
(b)
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pe II functional response. Panel (a) assumes small handling time
ashed lines are isoclines. Parameters: r¼1, �¼ 1, e¼ 0.2, m¼1.
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regulation. This happens, for example, when predators are
inefficient when handling prey (i.e., when the handling
time is large), or the intrinsic per capita prey growth rate
is high. This analysis validates the statement that the
Holling type II functional response is destabilizing,
which means that when handling times are positive, the
neutrally stable equilibrium of the Lotka–Volterra model
becomes unstable.

The Holling type I functional response combines the
effects of the linear functional response with the Holling

type II functional response for large handling times. Thus,

when the prey–predator equilibrium is in the part of the

prey–predator phase space where the functional response

increases linearly (Figure 5), small perturbations lead to

periodic oscillations around the equilibrium while large

perturbations lead to trajectories that diverge from the

equilibrium.
The work of A. N. Kolmogorov shows that prey–pre-

dator coexistence can occur only either at the

equilibrium, or along a limit cycle. However, in the case

of the prey–predator model [7] with the Holling type II

functional response it can be proved that no limit cycle

exists. Indeed, because

q
qR

1

RC
rR – f Rð ÞCð Þ

� �
þ q
qC

1

RC
g Rð ÞC –mCð Þ

� �

¼ 1

R

f Rð Þ
R

–
df Rð Þ

dR

� �
> 0 ½9�

the Dulac criterion excludes prey–predator limit cycles.
The functional response that meets the local stability

condition [8] is the Holling type III response. But, the

stabilizing effects of predators will occur only at low to

medium prey equilibrium densities (those that are to the
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Figure 5 Prey–predator population dynamics [7] with the

Holling type I functional response. Small perturbations from the

equilibrium lead to cycles exactly as in the case of the Lotka–

Volterra equation with the linear functional response. Larger
perturbations lead to trajectories that diverge from the

equilibrium. The dashed lines are isoclines. Parameters: r¼1,

�¼1, e¼0.2, m¼1, const¼ 10 where const is the upper ceiling

of the Holling type I functional response.
left of Rcrit in Figure 2c). This is the case shown in
Figure 6a. At a higher prey equilibrium density, the
functional response saturates and predators cannot regu-
late their prey (Figure 6b).

Functional and numerical responses depend on

the predator density

A prototype of such functions is the Beddington–
DeAngelis functional response [3]. To simplify analysis,
it is assumed that the handling time in the Beddington–
DeAngelis functional response is zero (h¼ 0). Thus,
prey–predator population dynamics are described by

dR

dt
¼ rR –

�R

1þ zC
C

dC

dt
¼ g R;Cð Þ –mð ÞC

½10�

At the population equilibrium the first stability condition
[5] simplifies to qg (R�,C�)/qC < 0 which means that
the predator growth must be negatively density depen-
dent. The second stability condition [6] simplifies to
qg(R�,C�)/qR > 0, which holds provided the numerical
response increases with increasing prey density. This
analysis implies that density-dependent predator growth
stabilizes prey–predator population dynamics when
handling times are neglected (Figure 7). Depending on
the parameters, positive handling times can surpass the
stabilizing effect of predator interference leading to an
unstable equilibrium.
Prey Growth Is Density Dependent

Now let us consider the case where the per capita prey
growth rate is density dependent and decreases with
increasing prey density (dr (R)/dR < 0). The simplest proto-
type of such dependence is a linear decrease in the per
capita prey growth rate (r (R)¼ r (1� (R/K)), which is
then the logistic equation with the carrying capacity K.
This type of prey growth is also called the bottom-up
regulation. Clearly, the negative density-dependent prey
growth promotes prey–predator coexistence because the
prey growth is now controlled by two independent
mechanisms: top-down and bottom-up regulation. This
is reflected in stability condition [5] where the left hand
side of the inequality is smaller for the negative density-
dependent prey growth rate when compared with expo-
nentially growing prey.

The Lotka–Volterra model with the logistic prey
growth rate is

dR

dt
¼ rR 1 –

R

K

� �
–�RC

dC

dt
¼ e�R –mð ÞC

½11�
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Figure 6 Prey–predator population dynamics [7] with the Holling type III functional response. (a) shows the stabilizing case where the
prey population equilibrium is in the range of prey abundances where the Holling type III functional response is stabilizing (i.e., smaller

than Rcrit from Figure 2c). (b) Shows the case where the prey population equilibrium does not satisfy this condition and the equilibrium is

unstable. Dashed lines are isoclines. Parameters: r¼ 1, �¼ 1, e¼ 0.2, h¼0.02, m¼ 1 in (a) and m¼ 5.5 in (b).
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Figure 7 Prey–predator population dynamics [7] with the

Beddington–DeAngelis functional response [3] when handling
time is neglected (h¼0). Dashed lines are isoclines. Parameters:

r¼ 1, �¼ 1, e¼ 0.2, z¼0.1, m¼ 1.
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Provided K > (m/e�), the interior equilibrium of this sys-
tem is

R� ¼ m

e�
and C� ¼ eK� –mð Þr

eK�2

and local stability conditions [5] and [6] hold for all
parameter values. Using the first integral V given by
formula [2] as a Lyapunov function it is easy to see
that this equilibrium is globally asymptotically stable
(i.e., all trajectories of model [11] with initially both
populations present converge to this equilibrium).
Indeed, function V decreases along the trajectories of
model [11] because

dV R tð Þ;C tð Þð Þ
dt

¼ –
r

K
R tð Þ – R�ð Þ2� 0

Replacing the linear functional response in model [11] by
the Holling type II functional response leads to the
Rosenzweig–MacArthur prey–predator model
dR

dt
¼ rR 1 –

R

K

� �
–

�R

1þ �hR
C

dC

dt
¼ e�R

1þ �hR
–m

� �
C

½12�

Provided the following two conditions are met

m <
e

h
and K >

m

� e –mhð Þ

the prey–predator equilibrium is

R� ¼ m

e – hmð Þ� and C� ¼ er �K e –mhð Þ –mð Þ
K e – hmð Þ2�2

Local stability condition [5] holds for carrying capacities
that meet the following constraint:

K <
e þ hm

�h e – hmð Þ :¼ Kcrit

Stability condition [6] holds for all parameter values.
Using the Dulac criterion it can be proved that no
limit cycles exist and the equilibrium is globally asymp-
totically stable (Figure 8a). At the critical carrying
capacity Kcrit the equilibrium undergoes the Hopf bifur-
cation and for higher carrying capacities a unique
globally stable limit cycle exists (Figure 8b). This
model shows that prey–predator coexistence is not lim-
ited to an equilibrium. In fact, as the environmental
carrying capacity (K) increases, the stable interior equili-
brium is destabilized and a globally stable limit cycle
appears. This phenomenon was termed the paradox of
enrichment because, contrary to the intuition, enriched
environments (i.e., environments with a higher K ) do not
promote species coexistence at an equilibrium. This
paradox is easy to understand, because an increase in
the environmental carrying capacity means a weaker
bottom-up regulation, thus a less-stable prey–predator
population dynamics due to the destabilizing Holling
type II functional response.
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Figure 8 Prey–predator dynamics for the MacArthur–Rosenzweig model [12]. (a) Shows the case where the carrying capacity is below
the critical level Kcrit (K¼ 20) and the equilibrium is globally asymptotically stable. (b) Shows that for higher carrying capacities (K¼ 70)

there exists a globally stable limit cycle along which prey coexist with predators. Dashed lines are isoclines. Parameters: r¼1, �¼1,

e¼ 0.2, h¼ 0.02, m¼ 1.
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Inhomogeneous Environment

The original Lotka–Volterra model does not consider
space explicitly. Instead, it assumes that populations are
uniformly distributed in space. Spatial structure can be
incorporated in the model either as a continuous variable
which then leads to reaction–diffusion models, or as a
discrete variable, which leads to patch models. A key
question addressed by spatial prey–predator models is
the effect of animal dispersal on the stability of prey–
predator dynamics.
Stability Caused by Asynchrony in Local
Dynamics

Here let us start with a simple example that considers
two spatial patches. In one patch prey are vulnerable to
predation while the other patch is a complete refuge.
We assume that up to S prey can be in the refuge and
both vulnerable and invulnerable prey reproduce at the
same positive rate r. This means that the refuge is
always fully occupied and animals born in the refuge
must disperse to the open patch. Population dynamics
in the open patch are described by the Lotka–Volterra
model

dR

dt
¼ r Rþ Sð Þ –�RC

dC

dt
¼ e�R –mð ÞC

with equilibrium densities

R� ¼ m

e�
; C� ¼ r

�
þ re

m
S

The recruitment of prey to the open patch makes the
per capita prey growth rate r (1þ S/R) in the open
patch negatively density dependent (i.e., it decreases
with increasing prey abundance R) similarly as in the
case of the logistic growth. The stability conditions [5]
and [6] hold and the above equilibrium is locally
asymptotically stable, which supports the general con-
clusion from other theoretical studies that refugia that
protect a constant number of prey have a strong
stabilizing effect on prey–predator population
dynamics.

This example nicely illustrates stabilizing mechanism
of asynchronous oscillations in population densities. In

this example, the abundance of prey in the refuge is

constant while the abundance of vulnerable prey varies

due to demographic changes and recruitment of prey

from the refuge. This asynchrony, then leads to the nega-

tive density-dependent recruitment rate of prey to the

vulnerable patch. While this mechanism is clear in this

simple example, it is much less obvious in many models

that consider space explicitly.
Now let us consider a more complex prey–predator

model in a heterogeneous environment consisting of N

patches. The simplest possible case assumes that all

patches are identical and animal dispersal is uncondi-

tional (random). The question is whether animal

dispersal can stabilize population dynamics that are

unstable without dispersal. Because unconditional animal

dispersal tends to equalize prey and predator abundance

across patches, animal dispersal tends to synchronize ani-

mal population dynamics and the answer to the above

question is negative. However, patch-dependent dispersal

rates and/or differences in local population dynamics can

lead to asynchrony in local population dynamics, thus to

negative density-dependent recruitment rates that can

stabilize prey–predator population dynamics on a

global scale exactly as in the example with the refuge.

Figure 9 shows the stabilizing effect of prey dispersal in a
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Figure 9 This figure shows the stabilizing effect of dispersal. The left panel shows prey (solid line) and predator (dashed line) dynamics
in patch 1 (top panel) and patch 2 (bottom panel) without any dispersal ("1¼ "2¼0). These dynamics assume the Holling type II

functional response which excludes prey and predator coexistence in either patch. The right panel shows the same system where prey

disperse between patches ("1¼ "2¼ 1). Parameters: r1¼1, r2¼0.2, �1¼�2¼0.1, e1¼e2¼0.2, h1¼h2¼ 0.02, m1¼m2¼1.
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two-patch environment. Population dynamics are described

by the following model:

dR1

dt
¼ r1R1 –

�1R1

1þ h1�1R1
C1 þ "2R2 – "1R1

dC1

dt
¼ e1�1R1

1þ h1�1R1
C1 –m1C1

dR2

dt
¼ r2R2 –

�2R2

1þ h2�2R2
C2 þ "1R1 – "2R2

dC2

dt
¼ e2�2R2

1þ h2�2R2
C2 –m2C2

where "i (i¼ 1, 2) describes prey dispersal between
patches. Without dispersal, the local prey–predator popu-
lation dynamics are unstable due to the Holling type II
functional response (Figure 9, left panel). Prey dispersal
(Figure 9, right panel) can stabilize population dynamics
at an equilibrium. Similarly, dispersal of predators (or
both prey and predators) can (but does not necessarily)
stabilize population densities. This mechanism is in the
roots of deterministic metapopulation dynamics where
populations can coexist on the global spatial scale despite
local extinctions. The necessary conditions for such glo-
bal stability are differences in patch or migration
dynamics and dispersal rates that are not too high to
synchronize local patch dynamics.
Predator Aggregation

Another mechanism that promotes prey–predator coex-
istence in spatially heterogeneous environments is the
tendency of predators to aggregate in patches where
prey abundance is high. If ui denotes the proportion of
predators in patch i, the Lotka–Volterra model for two
patches is then described by the following set of equations

dR1

dt
¼ r1R1 –�1R1u1C

dR2

dt
¼ r2R2 –�2R2u2C

dC

dt
¼ e1�1R1u1C þ e2�2R2u2C –mC

½13�

provided the predator mortality rate is patch indepen-
dent. Here Ri is prey abundance in patch i, and all other
parameters have the same meaning as those in the Lotka–
Volterra model, but they are patch dependent now. The
above model assumes that prey do not move between
the two patches. When predator distribution (ui) is fixed,
the above model has no interior equilibrium and the prey
with smaller value of ri/(ui�i) is always driven to extinc-
tion. This is documented in Figure 10a where the
second prey type (dashed line) is outcompeted by the
first prey (solid line). This indirect interaction is
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Figure 10 The effect of predator aggregation on population dynamics [13]. (a) Shows the extinction of the competitively weaker prey
species due to apparent competition when predator preferences for the two prey are fixed (u1¼ u2¼0.5). (b) Shows the coexistence of

all species when predator preferences are adaptive. Parameters: r1¼1.5, r2¼ 0.5, m¼0.2, e1¼0.15, e2¼0.1, �1¼�2¼ 1.
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mediated by predators (dot line). This kind of indirect
competition between the two prey populations, which is
mediated by the shared predators, is called apparent
competition.

The above analysis assumes that the proportion of
predators ui in each patch is fixed and independent of
prey abundances. Now let us consider the situation
where predator patch preferences are adaptive. If predator
fitness is measured by the per capita predator population
growth rate dC/(Cdt) then predators will aggregate in
patch 1 (u1¼ 1 and u2¼ 0) if e1�1R1 > e2�2R2 and in
patch 2 if the opposite inequality holds (here we neglect
the travel time between the two patches). This makes
predator preferences for either patch dependent on prey
abundances and predators switch between the two patches.
Predator switching then changes population dynamics of
model [13]. It can be proved that prey dynamics get
synchronized and prey–predator population dynamics in
both patches are described by the Lotka–Volterra-like
cycles (Figure 10b). In particular, both prey populations
coexist with predators indefinitely. This clearly shows that
predator aggregation can promote species coexistence
without necessarily leading to an equilibrium. In this
example, adaptive predator switching relaxes apparent
competition between the two prey because at low prey
density in one patch predators switch to the other patch. In
fact, this type of predator behavior drives the two prey
populations to the levels where predator fitness is the same
in both patches and predators will distribute across both
patches following the ‘ideal free distribution’.
Stability and Complexity in
Prey–Predators Models

Are more complex systems more stable? R. M. May used
an extension of the Lotka–Volterra model to show that
this is not the case. Let us consider a food web consisting
of n prey and n generalist predators. Assuming that such a
system has an equilibrium at which all species exist at
positive densities it can be shown that the corresponding
eigenvalues occur in pairs, each pair having the form
�þ i� and ��� i�. Thus, there are two possibilities.
Either real parts of all eigenvalues are zero in which
case the equilibrium is neutrally stable exactly as in the
case of the Lotka–Volterra prey–predator model [1]. If
there exists an eigenvalue with a negative real part, then
there must be also an eigenvalue with a positive real part
which means that the equilibrium in n-prey–n-predator
model is unstable. Thus, it is clear that the n-prey–
n- predator system at best has the same stability property
as the corresponding Lotka–Volterra prey–predator
model. As the number of species increases it is more likely
that among the eigenvalues there will be an eigenvalue
with a positive real part and the equilibrium will be
unstable. This and other models lead to prediction that
complexity destabilizes food webs. These studies consid-
ered only the case where interaction strengths are fixed.
In other words, they exclude the possibility of adaptive
predator foraging behavior, or prey escape strategies.
Recent studies show that when predator foraging behav-
ior is adaptive (similarly as described in model [13]), the
negative relation between food web complexity and com-
munity persistence can be reversed.
Summary

The original Lotka–Volterra predator–prey model was
extended in many directions, resulting in a vast theore-
tical literature on prey–predator interactions. Some of
these models relax the original assumptions and analyze
the properties of the resulting models. Others try to adapt
the existing models to some particular empirical prey–
predator systems. In this article surveyed some basic
theory resulting from the Lotka–Volterra formalism that
considers time as a continuous variable was surveyed.
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This corresponds to the situation where populations
reproduce and die continuously. Alternative formalism
is based on models that consider time as a discrete
variable. These models can better fit situations where
individual reproduction is synchronized. A discrete
time alternative to the Lotka–Volterra model is the
Nicholson–Bailey host–parasitoid model that can be as
well used as a description of prey–predator interactions.
See also: Coexistence; Competition and Competition

Models; Dispersal–Migration; Fishery Models; Indirect

Effects in Ecology; Mathematical Ecology;

Metapopulation Models; Stability.
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Introduction

Principal components analysis (PCA) is an ordination
technique used primarily to display patterns in
multivariate data. It aims to display the relative positions
of data points in fewer dimensions while retaining as
much information as possible, and explore relationships
between dependent variables. In general, it is a hypoth-
esis-generating technique that is intended to describe
patterns, rather than test formal statistical hypotheses.
Although PCA was originally developed to analyze con-
tinuous variables, it can also be used on ordinal and
presence–absence data.
PCA is carried out on the response of dependent vari-
ables in a multivariate data set. Consequently it is an
unconstrained ordination, in which hypothetical causal
independent variables are not explicitly included in the
analysis. For example, if the abundance of several species
of fish (the response or dependent variables) were mea-
sured at a range of different sites with different
characteristics such as wave exposure (causal or indepen-
dent variables), the exposure information would not be
explicitly included in the analysis. Patterns recovered in
PCA are solely a function of relationships between the
dependent variables. For this reason, PCA can also be
classified as an indirect gradient analysis, in which
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